Age-associated decline in mitochondrial membrane potential (MMP) is a ubiquitous aspect of eukaryotic organisms and is associated with many aging-related diseases. However, it is not clear whether this decline is a cause or consequence of aging, and therefore whether interventions to reduce MMP decline are a viable strategy to promote healthier aging and longer lifespans. We developed a screening platform in Saccharomyces cerevisiae to identify mutations that slowed or abrogated the age-associated decline in MMP. Characterization of the longest-lived mutant revealed that reduced internal potassium increased MMP and extended lifespan. Distinct interventions improved cellular MMP and lifespan: deleting a potassium transporter; altering the balance between kinases and phosphatases that control potassium transporter activity; and reducing available potassium in the environment. Similarly, in isolated mitochondria, reducing the concentration of potassium was sufficient to increase MMP. These data indicate that the most abundant monovalent cation in eukaryotic cells plays a critical role in tuning mitochondrial function, consequently impacting lifespan.
No Comments
Leave a comment Cancel