1. Biology

eIF5A controls mitoprotein import by relieving ribosome stalling at TIM50 translocase mRNA

Efficient import of nuclear-encoded proteins into mitochondria is crucial for proper mitochondrial function. The conserved translation factor eIF5A binds ribosomes, alleviating stalling at polyproline-encoding sequences. eIF5A impacts mitochondrial function across species, though the precise molecular mechanism is unclear. We found that eIF5A depletion in yeast reduces the translation and levels of the TCA cycle and oxidative phosphorylation proteins. Loss of eIF5A causes mitoprotein precursors to accumulate in the cytosol and triggers a mitochondrial import stress response. We identify an essential polyproline protein as a direct target of eIF5A: the mitochondrial inner membrane protein and translocase component Tim50. Thus, eIF5A controls mitochondrial protein import by alleviating ribosome stalling along Tim50 mRNA at the mitochondrial surface. Removal of polyprolines from Tim50 partially rescues the mitochondrial import stress response and translation of oxidative phosphorylation genes. Overall, our findings elucidate how eIF5A impacts the mitochondrial function by promoting efficient translation and reducing ribosome stalling of co-translationally imported proteins, thereby positively impacting the mitochondrial import process.

Comments to: eIF5A controls mitoprotein import by relieving ribosome stalling at TIM50 translocase mRNA

Login

Welcome to Life Science News!

"Explore the Latest Discoveries and Breakthroughs in Life Science with Life Science News!"
Read Smart, Save Time
Pick all the topics you are interested in to fill your homepage with stories you'll love.
Join our community
Registration is closed.