1. Biology

Submembrane liprin-α1 clusters spatially localize insulin granule fusion

Insulin granule fusion in pancreatic β cells localizes to where they contact the ECM of the islet capillaries. The mechanism(s) underpinning localization are unclear. Using glucose or high K+ stimulation or the global uncaging of Ca2+, we show granule fusion consistently focused to the β cell–ECM interface, suggesting a specific localization mechanism. We tested for the involvement of liprin-α1, a scaffold protein enriched at the β cell–ECM interface. Liprin-α1 knockdown did not affect high K+-stimulated insulin secretion but did impair localization of exocytosis. Liprin-α1 knockdown impaired glucose-induced insulin secretion with evidence that the C-terminal of liprin-α1 positions liprin-α1 in clusters at the β cell–ECM interface. Liprin-α1 cluster size and number are regulated by glucose, and exocytosis is spatially coupled with the clusters. Immunoprecipitation and mass spectrometry characterized a liprin-α1 interactome, including β2-syntrophin, an insulin granule–linked protein. We conclude that liprin-α1 is part of a complex that is regulated by glucose and locally targets insulin granules to the β cell–ECM interface.

Comments to: Submembrane liprin-α1 clusters spatially localize insulin granule fusion

Login

Welcome to Life Science News!

"Explore the Latest Discoveries and Breakthroughs in Life Science with Life Science News!"
Read Smart, Save Time
Pick all the topics you are interested in to fill your homepage with stories you'll love.
Join our community
Registration is closed.